
KeY-Style Verification for (Hybrid) ABS
Advances after KeY-ABS

Eduard Kamburjan
University of Oslo

KeYnote Series, 23.04.2021

Introduction

Specification Language

Dynamic Logic External Tools

Programming Language

Publication: Kamburjan, Scaletta, Rollshausen, Crowbar: Behavioral Symbolic Execution for Deductive Verification
of Active Objects, abs/2102.10127

Available at https://github.com/Edkamb/crowbar-tool

1/27

Introduction

Specification Language

Dynamic Logic External Tools

Programming Language

Publication: Kamburjan, Scaletta, Rollshausen, Crowbar: Behavioral Symbolic Execution for Deductive Verification
of Active Objects, abs/2102.10127

Available at https://github.com/Edkamb/crowbar-tool

1/27

Introduction

Specification Language

Dynamic Logic External Tools

Object-Oriented
Sequential

Programming Language

Publication: Kamburjan, Scaletta, Rollshausen, Crowbar: Behavioral Symbolic Execution for Deductive Verification
of Active Objects, abs/2102.10127

Available at https://github.com/Edkamb/crowbar-tool

1/27

Introduction

Specification Language

Dynamic Logic External Tools

Object-Oriented
Sequential

Programming Language

Publication: Kamburjan, Scaletta, Rollshausen, Crowbar: Behavioral Symbolic Execution for Deductive Verification
of Active Objects, abs/2102.10127

Available at https://github.com/Edkamb/crowbar-tool

1/27

Introduction

Specification Language

Dynamic Logic External Tools

Object-Oriented
Distributed / Hybrid

Programming Language

Publication: Kamburjan, Scaletta, Rollshausen, Crowbar: Behavioral Symbolic Execution for Deductive Verification
of Active Objects, abs/2102.10127

Available at https://github.com/Edkamb/crowbar-tool

1/27

Introduction

Specification Language

Dynamic Logic External Tools

Object-Oriented
Distributed / Hybrid

Programming Language

?

Publication: Kamburjan, Scaletta, Rollshausen, Crowbar: Behavioral Symbolic Execution for Deductive Verification
of Active Objects, abs/2102.10127

Available at https://github.com/Edkamb/crowbar-tool

1/27

Introduction

Specification Language

Dynamic Logic External Tools

(Hybrid) ABS

Crowbar

Publication: Kamburjan, Scaletta, Rollshausen, Crowbar: Behavioral Symbolic Execution for Deductive Verification
of Active Objects, abs/2102.10127

Available at https://github.com/Edkamb/crowbar-tool

1/27

Preliminaries

Active Objects: Between Actors and Shared Memory

1 class A(Int x, Bool locked, B other) implements A{
2 Unit m(){
3 Fut<Int> f = other!met(this.x);
4 this.locked = True;
5 await f?;
6 this.locked = False;
7 this.x = this.x + f.get;
8 }
9 Unit setX(Int x){ await !this.locked; this.x = x; }

10 }

• Object-private fields, interleavings only at await

• Object-Oriented Actors + Futures + Cooperative Scheduling

2/27

ABS

ABS
ABS is specifically designed to combine verification, analysis,
execution and natural modeling (for programmers).

• Functional Language

1 data IntList = Cons(Int, IntList) | Nil;
2 def Int length(IntList l) = case l { ... };

• Symbolic time

1 println(now()); //0
2 duration(1,1);
3 println(now()); //1

• …
3/27

KeY-ABS

KeY-ABS
Developed 2015, keeps track of communication events during
symbolic execution in a history. Trace properties are verified as
object invariants over the history.

• FO logic over histories is not a good specification language
• Requires full symbolic execution to detect errors in the

beginning of the method
• Implementation still retains Java-bindings:

• Hard to connect with external tools
• Hard to prototype new specifications
• Hard to include functional sublanguage

4/27

Behavioral Program Logic

Trace Properties

In a concurrent setting, (a) most properties of interest are
trace-based and (b) no general scheme is established.

The Many Faces of the Box Modality for Traces

• [s]∀i ∈ N. history[i] ̸ .= invEv ABSDL [Din et al., SEFM’12]

• [s]□this.f>0 DTL [Beckert and Bruns, CADE’13]

• [s]finite ∗ ∗⌈this.f>0⌉ ∗ ∗finite DLCT [Din et al., TABLEAUX’15&’17]

• s ⊢ X!m⟨this.f>0⟩.Y!n.end Session Types for AO [Kamburjan and Chen, iFM’18]

• And more....

5/27

Behavioral Program Logic

Trace Properties

In a concurrent setting, (a) most properties of interest are
trace-based and (b) no general scheme is established.

The Many Faces of the Box Modality for Traces

• [s]∀i ∈ N. history[i] ̸ .= invEv ABSDL [Din et al., SEFM’12]

• [s]□this.f>0 DTL [Beckert and Bruns, CADE’13]

• [s]finite ∗ ∗⌈this.f>0⌉ ∗ ∗finite DLCT [Din et al., TABLEAUX’15&’17]

• s ⊢ X!m⟨this.f>0⟩.Y!n.end Session Types for AO [Kamburjan and Chen, iFM’18]

• And more....

5/27

Behavioral Program Logic

Trace Properties

In a concurrent setting, (a) most properties of interest are
trace-based and (b) no general scheme is established.

The Many Faces of the Box Modality for Traces

• [s]∀i ∈ N. history[i] ̸ .= invEv ABSDL [Din et al., SEFM’12]

• [s]□this.f>0 DTL [Beckert and Bruns, CADE’13]

• [s]finite ∗ ∗⌈this.f>0⌉ ∗ ∗finite DLCT [Din et al., TABLEAUX’15&’17]

• s ⊢ X!m⟨this.f>0⟩.Y!n.end Session Types for AO [Kamburjan and Chen, iFM’18]

• And more....

5/27

Behavioral Program Logic

Trace Properties

In a concurrent setting, (a) most properties of interest are
trace-based and (b) no general scheme is established.

The Many Faces of the Box Modality for Traces

• [s]∀i ∈ N. history[i] ̸ .= invEv ABSDL [Din et al., SEFM’12]

• [s]□this.f>0 DTL [Beckert and Bruns, CADE’13]

• [s]finite ∗ ∗⌈this.f>0⌉ ∗ ∗finite DLCT [Din et al., TABLEAUX’15&’17]

• s ⊢ X!m⟨this.f>0⟩.Y!n.end Session Types for AO [Kamburjan and Chen, iFM’18]

• And more....

5/27

Behavioral Program Logic

Trace Properties

In a concurrent setting, (a) most properties of interest are
trace-based and (b) no general scheme is established.

The Many Faces of the Box Modality for Traces

• [s]∀i ∈ N. history[i] ̸ .= invEv ABSDL [Din et al., SEFM’12]

• [s]□this.f>0 DTL [Beckert and Bruns, CADE’13]

• [s]finite ∗ ∗⌈this.f>0⌉ ∗ ∗finite DLCT [Din et al., TABLEAUX’15&’17]

• s ⊢ X!m⟨this.f>0⟩.Y!n.end Session Types for AO [Kamburjan and Chen, iFM’18]

• And more....

5/27

Behavioral Modalities

[

s︸︷︷︸
statement

semantics︷︸︸︷
α
⊩ τ︸︷︷︸

type

]

6/27

Behavioral Modalities

[s︸︷︷︸
statement

semantics︷︸︸︷
α
⊩ τ︸︷︷︸

type

]

6/27

Behavioral Modalities

[s︸︷︷︸
statement

semantics︷︸︸︷
α
⊩

τ︸︷︷︸
type

]

6/27

Behavioral Modalities

[s︸︷︷︸
statement

semantics︷︸︸︷
α
⊩ τ︸︷︷︸

type
]

6/27

BPL

Example

Trace-specifications are too complex for simple post-conditions.
• ABSDL has object-invariant implicit
• BPL makes structure explicit

Γ ⇒ {U}{x := v}[s⊩(ϕ, inv)], ∆
(BPL)

Γ ⇒ {U}[x = v; s⊩(ϕ, inv)], ∆

Γ ⇒ {U}inv , ∆
Γ, {UA}inv ⇒ {UA}[s⊩(ϕ, inv)], ∆

(BPL)
Γ ⇒ {U}[await e?; s⊩(ϕ, inv)], ∆

. . .
Γ{UA}I ⇒ {UA}[s⊩(I, inv)], ∆

(BPL)
Γ ⇒ {U}[while(e){s}s'⊩(ϕ, inv)], ∆

7/27

BPL

Example

Trace-specifications are too complex for simple post-conditions.
• ABSDL has object-invariant implicit
• BPL makes structure explicit

Γ ⇒ {U}{x := v}[s⊩(ϕ, inv)], ∆
(BPL)

Γ ⇒ {U}[x = v; s⊩(ϕ, inv)], ∆

Γ ⇒ {U}inv , ∆
Γ, {UA}inv ⇒ {UA}[s⊩(ϕ, inv)], ∆

(BPL)
Γ ⇒ {U}[await e?; s⊩(ϕ, inv)], ∆

. . .
Γ{UA}I ⇒ {UA}[s⊩(I, inv)], ∆

(BPL)
Γ ⇒ {U}[while(e){s}s'⊩(ϕ, inv)], ∆

7/27

BPL

Example

Trace-specifications are too complex for simple post-conditions.
• ABSDL has object-invariant implicit
• BPL makes structure explicit

Γ ⇒ {U}{x := v}[s⊩(ϕ, inv)], ∆
(BPL)

Γ ⇒ {U}[x = v; s⊩(ϕ, inv)], ∆

Γ ⇒ {U}inv , ∆
Γ, {UA}inv ⇒ {UA}[s⊩(ϕ, inv)], ∆

(BPL)
Γ ⇒ {U}[await e?; s⊩(ϕ, inv)], ∆

. . .
Γ{UA}I ⇒ {UA}[s⊩(I, inv)], ∆

(BPL)
Γ ⇒ {U}[while(e){s}s'⊩(ϕ, inv)], ∆ 7/27

Crowbar

Structure

Behavioral Symbolic Execution

Crowbar is a symbolic execution engine to prototype behavioral
symbolic execution: SE influenced by its context.

Aims

• Investigate how SE can cooporate with rest of static toolchain
• Quicker development cycles than KeY/Java

8/27

Frontend: Specification

Supported Specification Appraoches

• Cooperative method contracts (with \old and \last)
• Object invariants
• Session Types

• Only user-input is a complete ABS program to integrate with
the parser and type system.

• Specifications are annotated directly in the program.
1 ...
2 [Spec: LoopInv(i>=0)]
3 while(i > 0) i = i-1;
4 ...

9/27

Frontend: Specification

Supported Specification Appraoches

• Cooperative method contracts (with \old and \last)
• Object invariants
• Session Types

• Only user-input is a complete ABS program to integrate with
the parser and type system.

• Specifications are annotated directly in the program.
1 ...
2 [Spec: LoopInv(i>=0)]
3 while(i > 0) i = i-1;
4 ...

9/27

Nullability Guides

Nullability Types

Most null-pointer exceptions can be handled by the type system.
ABS has a lightweight analysis to mark expression as non-null.

1 Unit m([NonNull] C o, C o2){
2 Int i = o.m(); //safe
3 Int j = o2.m();
4 Int k = o2.m(); //safe
5 return i + j + k;
6 }

• Crowbar keeps this information in the AST
• Safe accesses do not cause branching

10/27

Top-Down Specification with Session Types

G

G ↾ X′

G ↾ X

︸ ︷︷ ︸
Step 1: Generating

local types for objects

prp∗(G ↾ X′)

prp∗(G ↾ X)

︸ ︷︷ ︸
Step 2: Propagating
guarantees in objects

prp∗(G ↾ X′) ↾ m′
2

prp∗(G ↾ X′) ↾ m′
1

prp∗(G ↾ X) ↾ m2

prp∗(G ↾ X) ↾ m1

︸ ︷︷ ︸
Step 3: Generating

local types for methods

• Propgation is outside Crowbar

• Each class generates a static node for projection

11/27

Top-Down Specification with Session Types

G
G ↾ X′

G ↾ X

︸ ︷︷ ︸
Step 1: Generating

local types for objects

prp∗(G ↾ X′)

prp∗(G ↾ X)

︸ ︷︷ ︸
Step 2: Propagating
guarantees in objects

prp∗(G ↾ X′) ↾ m′
2

prp∗(G ↾ X′) ↾ m′
1

prp∗(G ↾ X) ↾ m2

prp∗(G ↾ X) ↾ m1

︸ ︷︷ ︸
Step 3: Generating

local types for methods

• Propgation is outside Crowbar

• Each class generates a static node for projection

11/27

Top-Down Specification with Session Types

G
G ↾ X′

G ↾ X

︸ ︷︷ ︸
Step 1: Generating

local types for objects

prp∗(G ↾ X′)

prp∗(G ↾ X)

︸ ︷︷ ︸
Step 2: Propagating
guarantees in objects

prp∗(G ↾ X′) ↾ m′
2

prp∗(G ↾ X′) ↾ m′
1

prp∗(G ↾ X) ↾ m2

prp∗(G ↾ X) ↾ m1

︸ ︷︷ ︸
Step 3: Generating

local types for methods

• Propgation is outside Crowbar

• Each class generates a static node for projection

11/27

Top-Down Specification with Session Types

G
G ↾ X′

G ↾ X

︸ ︷︷ ︸
Step 1: Generating

local types for objects

prp∗(G ↾ X′)

prp∗(G ↾ X)

︸ ︷︷ ︸
Step 2: Propagating
guarantees in objects

prp∗(G ↾ X′) ↾ m′
2

prp∗(G ↾ X′) ↾ m′
1

prp∗(G ↾ X) ↾ m2

prp∗(G ↾ X) ↾ m1

︸ ︷︷ ︸
Step 3: Generating

local types for methods

• Propgation is outside Crowbar

• Each class generates a static node for projection

11/27

Top-Down Specification with Session Types

G
G ↾ X′

G ↾ X

︸ ︷︷ ︸
Step 1: Generating

local types for objects

prp∗(G ↾ X′)

prp∗(G ↾ X)

︸ ︷︷ ︸
Step 2: Propagating
guarantees in objects

prp∗(G ↾ X′) ↾ m′
2

prp∗(G ↾ X′) ↾ m′
1

prp∗(G ↾ X) ↾ m2

prp∗(G ↾ X) ↾ m1

︸ ︷︷ ︸
Step 3: Generating

local types for methods

• Propgation is outside Crowbar

• Each class generates a static node for projection

11/27

Session Types

1 [Spec:Role("server", this.s)][Spec:Role("db", this.d)]
2 [Spec:ObjInv(...)]
3 class C(Server s, Client c, Database d) {
4 [Spec:Local("db!reset().(server!m(a > 3))*.Put()")]
5 Unit sideconditionInLoop() {
6 Fut<Int> sth = this.d!reset();
7 Int a = 10;
8 [Spec: WhileInv(this.s != null)]
9 while(a > 5) sth = this.s!m(a--);

10 }
11 }

Γ ⇒ {U}(X .= this.f ∧ ϕ), ∆ Γ ⇒ {U}{v := f }[s
met
⊩ L], ∆

(met-V)

Γ ⇒ {U}[v = this.f!m(); s
met
⊩ X!m⟨ϕ⟩.L], ∆

12/27

Functional Layer

Functions and Data in ABS
ABS has a functional sublanguage for ADTs.
Each definition is translated into an assignment with contracts.

1 [Spec: Requires(n >= 0)][Spec: Ensures(result >= 0)]
2 def Int fac(Int n) = if(n<=1) then 1 else n*fac(n-1);

1 [Spec: Requires(n >= 0)][Spec: Ensures(result >= 0)]
2 Int fac(Int n){
3 return if(n<=1) then 1 else n*this.fac(n-1);
4 }

13/27

Functional Layer

Functions and Data in ABS
ABS has a functional sublanguage for ADTs.
Each definition is translated into an assignment with contracts.

1 [Spec: Requires(n >= 0)][Spec: Ensures(result >= 0)]
2 def Int fac(Int n) = if(n<=1) then 1 else n*fac(n-1);

(
∀ Int x . x ≥ 0 → fac(x) ≥ 0

)
∧ n ≥ 0

→
[
result = if(n <= 1) then 1 else n*fac(n-1); ⊩αpst result ≥ 0

]
• ABS does not support first-order function passing
• ADTs are translated into SMT-LIB datatypes

13/27

Middleend: BPL

Behavioral Symbolic Execution

Crowbar implements symbolic execution with guides: additional
inputs that guide execution and shape the symbolic execution tree.

Rules

• Rules Kotlin classes implementing
1 abstract class Rule(val conclusion : Modality) {
2 abstract fun transform(cond :MatchCondition,
3 input :SymbolicState): List<SymbolicTree>
4 }

• Matching is implemented directly on the AST using reflection:
Schemavariables are any instances implements AbstractVar

14/27

Counterexample Generation

User Feedback
While non-interactive, Crowbar must still give comprehensive
feedback to user and developer. We generate a program from
failing proof branch and annotate relation to specification.

DEMO

15/27

Experiences with Crowbar

Experiences with Crowbar

C2ABS[Wasser et al., SCP’21]

Translates ACSL-specified C-Code into ABS.
Underspecified semantics becomes non-deterministic concurrency.

Example

Following code returns 1 (clang) or 2 (gcc)

int x;
int id_set_x(int val){

x=1; return val ;
}
int main(void){

x=0; return x + id_set_x(1);
}

16/27

Experiences with Crowbar

Case Study

Highly underspecified variant of fib(n) which returns a number
between 1 and the nth fibonnaci number based on evaluation order.

• 4 C functions, each with post-conditions, 1 Strong invariant

Translation generates 260 lines of ABS code

• 5 classes (with invariants and creation conditions)
• 5 interfaces with 19 method contracts
• 1 function with contract

Old KeY-ABS case study: 140 LoC, 1 class, 1 invariant, interactive

17/27

Extensions

Advances in Language Coverage over KeY-ABS

• Covers complete imperative layer of CoreABS without
exception handlers

• Covers functional layer without let

• Specification integrated into ABS

Missing Pieces

• Explicit history using the functional layer and ghost statements
• First-Order Specification and full ABS Session Types
• Additional backends (Why3, KeY-Java, ...)
• Restarting SE for further modalities

18/27

Hybrid ABS

Hybrid ABS

Distributed Cyber-Physical Systems

Many modern system are distributed CPS with isolated dynamics:
IoT, Industrie 4.0, Digital Twins, …

How to (a) model (b) simulate and (c) verify such systems?

Hybrid ABS

• Modeling: Hybrid ABS = ABS + ODEs.
• Verifying: Crowbar + KeYmaera X

19/27

Water Tank

Sensor

Actuator

Controller

time in seconds

level
drain

 0

 2

 4

 6

 8

 10

 0 50 100 150 200

class CSingleTank(Real inVal){
physical{
Real lvl = inVal : lvl' = flow;
Real flow = -0.5 : flow' = 0;

}
Unit run(){ this!up(); this!low(); }
Unit low(){
await diff lvl <= 3 & flow <= 0;
flow = 0.5; this!low();
}
Unit up(){...}

}

20/27

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly
with dynamic logic by showing that every method preserves I.

I →[s]I Proof Obligation for Java

This uses that the state does not change in inactive objects.

21/27

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly
with dynamic logic by showing that every method preserves I.

I →[s]I Proof Obligation for Java

This uses that the state does not change in inactive objects.

t

method
excutions

21/27

Object Invariants

Proof Obligations with Dynamic Logic

In discrete systems, an object invariant I can be checked modularly
with dynamic logic by showing that every method preserves I.

I →[s]I Proof Obligation for Java

This uses that the state does not change in inactive objects.

t

method
excutions

21/27

Object Invariants

Challenge: Express that I holds until the next method runs.

Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

ϕ ::= ∀x . ϕ | . . . | [α]ϕ α ::=?ϕ | v := t | {v′ = f (v)&ϕ} | . . .

Example

Set a variable to 0, let it raise with slope 1 while it is below 5 and
discard all runs where it is above 5.[

x := 0; {x′ = 1&x ≤ 5}; ?x ≥ 5
]
x .= 5

This formula is valid.

22/27

Object Invariants

Challenge: Express that I holds until the next method runs.
Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

ϕ ::= ∀x . ϕ | . . . | [α]ϕ α ::=?ϕ | v := t | {v′ = f (v)&ϕ} | . . .

Example

Set a variable to 0, let it raise with slope 1 while it is below 5 and
discard all runs where it is above 5.[

x := 0; {x′ = 1&x ≤ 5}; ?x ≥ 5
]
x .= 5

This formula is valid.

22/27

Object Invariants

Challenge: Express that I holds until the next method runs.
Differential Dynamic Logic

A logic for (algebraic) hybrid programs:

ϕ ::= ∀x . ϕ | . . . | [α]ϕ α ::=?ϕ | v := t | {v′ = f (v)&ϕ} | . . .

Example

Set a variable to 0, let it raise with slope 1 while it is below 5 and
discard all runs where it is above 5.[

x := 0; {x′ = 1&x ≤ 5}; ?x ≥ 5
]
x .= 5

This formula is valid.
22/27

Object Invariants

Proof Obligations for Hybrid Active Objects

If we can translate the method body of a method into dL, then we
can express that the invariant holds once the method ends and
keeps holding when following the dynamics.

I →
[
s
](

I ∧ [ode&true]I
)

Proof Obligation for HABS

t

method
excutions

Using true means that I must hold forever... 23/27

Controlled Regions

Controlled Regions

Let g be disjunction of the guards of the methods that are known
to be in the scheduler queue after a method terminates. To
establish I, the following proof obligation suffices:

I →
[
s
](

I ∧
[
ode&¬g

]
I
)

Example

1 Real m() { ... this!other(); return 0; }
2 Real other() { await diff x >= 0; ... }

I →
[

. . .
](

I ∧
[
ode&x ≤ 0

]
I
)

24/27

Water Tank

class CSimpleSingleTank(Real inVal){
physical{
Real lvl = inVal : lvl' = flow;
Real flow = -0.5 : flow' = 0;

}
Unit run(){ this!up(); this!low(); }
Unit low(){ await diff lvl <= 3; flow = 0.5; this!low(); }
Unit up(){ await diff lvl >= 10; flow = -0.5; this!up(); }

}

I → [...]
(
I ∧ [ode&lvl ≥ 3 ∧ lvl ≤ 10]I

)

25/27

Chisel

Chisel[Kamburjan, HSCC’21]

Post-Regions are implemented as a translation into KeYmaera X.

• Also supports method contracts and local Zeno Behavior.
• Interoperable with Crowbar through method contracts.
• Only supports Real variables

Future Work
Is it possible to move all ODEs out of the first program?

duration(5); I →
[
s; {ode&t ≤ 5}; s'

](
I ∧ [ode&true]I

)

26/27

Chisel

Chisel[Kamburjan, HSCC’21]

Post-Regions are implemented as a translation into KeYmaera X.

• Also supports method contracts and local Zeno Behavior.
• Interoperable with Crowbar through method contracts.
• Only supports Real variables

Future Work
Is it possible to move all ODEs out of the first program?

duration(5); I →
[
s; {ode&t ≤ 5}; s'

](
I ∧ [ode&true]I

)

26/27

Conclusion

Crowbar: A flexible framework for prototyping deductive
verification of distributed object-oriented programs.

On-Going and Future Work

• Redo the KeY-ABS case studies in Crowbar
• Rules as Kotlin DSL
• Comparison of trace specifications/logics in Crowbar
• Verification of coupled objects in Hybrid ABS

Long-term goal

Reintegration with KeY as a KeY-ABS successor

Thank you for your attention

27/27

Conclusion

Crowbar: A flexible framework for prototyping deductive
verification of distributed object-oriented programs.
On-Going and Future Work

• Redo the KeY-ABS case studies in Crowbar
• Rules as Kotlin DSL
• Comparison of trace specifications/logics in Crowbar
• Verification of coupled objects in Hybrid ABS

Long-term goal

Reintegration with KeY as a KeY-ABS successor

Thank you for your attention

27/27

Conclusion

Crowbar: A flexible framework for prototyping deductive
verification of distributed object-oriented programs.
On-Going and Future Work

• Redo the KeY-ABS case studies in Crowbar
• Rules as Kotlin DSL
• Comparison of trace specifications/logics in Crowbar
• Verification of coupled objects in Hybrid ABS

Long-term goal

Reintegration with KeY as a KeY-ABS successor

Thank you for your attention

27/27

Conclusion

Crowbar: A flexible framework for prototyping deductive
verification of distributed object-oriented programs.
On-Going and Future Work

• Redo the KeY-ABS case studies in Crowbar
• Rules as Kotlin DSL
• Comparison of trace specifications/logics in Crowbar
• Verification of coupled objects in Hybrid ABS

Long-term goal

Reintegration with KeY as a KeY-ABS successor

Thank you for your attention
27/27

	Preliminaries
	Crowbar
	Experiences with Crowbar
	Hybrid ABS

